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1. INTRODUCTION

By the Borel-CaratModory inequality, iffis holomorphic in I z I < 1 with
Rej(z) :(; A (A > 0), then

1 + rII/(z)lllzkr<l ~ 1_ r (A + 11(0)1), (1.1)

where the left hand side denotes the sup norm of f over the closed disc
I z I :(; r < 1. We make use of this result to prove a similar inequality:

THEOREM 1. Let y be a closed, nondegenerate arc of I z I = 1. Let f be
holomorphic in I z I < 1 with Rej(z) < A (A > 0) there and continuous in
{I z I < 1} u y with Ilflly ~ M. For any compact subset S of yO U {I z I < 1}
there is a constant Cs , dependent only on S, such that

Ilflls ~ CsCA + M). (1.2)

(yO is y with its end points removed.)

We use Theorem 1 to generalize a classical Theorem of Laguerre-P61ya
[6, Theorem XII]: if D is an open half-plane and {PnCz)} is a sequence of
DC-polynomials (polynomials whose zeros lie in the complement of D) which
converges uniformly on a disc in D to somef"¥= 0, then {PnCz)} converges
uniformly on every compact set andf is entire of order ~ 2. This result was
generalized in one direction by Ganelius [2] who extended it to simply con-

* These results are part of the author's 1966 doctoral dissertation at the University of
Wisconsin, written under the direction of Professor Jacob Korevaar. This work was
supported by a research grant from the National Science Foundation.
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nected domains containing a half-plane. Later Korevaar and Loewner [5]
proved that when D is an open half-plane, it is sufficient to have uniform
convergence to f =1= 0 on a Jordan arc in clos D. These results follow as
special cases of:

THEOREM 2. Let D be a simply connected domain containing a half-plane.
Let y be a Jordan arc in clos D such that either yC D or y is a free Jordan arc
for D (that is, yO contains only accessible boundary points ofD and every Jordan
domain bounded by a subarc of yO and two cuts into D lies entirely in D).
If {PnCz)} is a sequence of DC-polynomials which converges uniformly on y to
some f =1= 0, then {Pn(z)} converges uniformly on every compact set and f is
entire of order ~ 2. (For a more precise description of the form off see [6].)

2. THE VARIANT OF THE BOREL-CARATHEODORY INEQUALITY

Theorem 1 follows quite easily from Lemma 2.1, whose proof was suggested
by F. Carroll.

LEMMA 2.1. Let y = {e iB
: I 8 I ~ 80 < 7T}. Suppose f is holomorphic in

I z I < 1 with Re/(z) > 0 there and continuous on {I z I < I} U y with
Ilfllv ~ 1. For each closed sector S = {z: I arg z I ~ 81 < 80 , I z I ~ I} there
is a constant Cs dependent only on S, such that Ilflls ~ Cs max(l, 1/(0)1).

Proof Let Zl = exp(i(80 + 81)/2) and Z2 = Zl . We define:

Then,

II h Ilv ~ 411fllv ~ 4,

and by applying the Borel-Caratheodory inequality to I(z), we obtain

(2.1)

(2.2)

I h(rz1)! ~ 2(1 - r) g=;~ 1/(0)1 ~ 41/(0)1. (2.3)

Similarly,

Ih(rz2) I ~ 4 1/(0)1.

But h(z) is holomorphic in I z I < 1, so that by (2.2), (2.3) and (2.4):

II h lis ~ 4 max(1 1(0)1, 1).

(2.4)

(2.5)
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It follows from (2.1) and (2.5) that

(2.6)

LEMMA 2.2. Let y, f and S be as in Lemma 2.1 and let

U = {I z 1~ r1 < I} uS.

There exists a constant Cu , dependent only on U, such that

Ilfllu ~ Cu·

Proof By Lemma 2.1, II fils ~ Cs max(l, Ij(O)I). By the Borel
Caratheodory inequality, Ilflllzl.;;r

1
~ [(1 + rJj(1 - r1)] max(1, 1/(0)1). Thus

Ilfllu ::::;; K u max(l, 1/(0)1), where K u = Cs + [(1 + rJj(1 - rJ] > 1.
If 1/(0)1 ::::;; I, then

Ilfllu ~ K u · (2.7)

If 1/(0)1 > I, then Ilfllu ~ K u 1/(0)1 and by the two constants theorem
[3, Vol. 2, p. 409],

1/(0)1 ~ (Ku 1/(0)1)1' . P-\

where'\ (0 < ,\ < I) is the harmonic measure of {e i6 : I (J I ~ (Jl} with respect
to Uo, the interior of U, evaluated at O. So I/(0)1 ~ K~(I-A) and

(2.8)

By (2.7) and (2.8) we always have Ilfllu ~ K~(I-A).

Proof of Theorem I. Without loss of generality, we may assume

y = {ei6 : I () I ~ (Jo < 7T}

and

s = {z : I z I ~ r1 < I} u {z: I arg z I ::::;; f)1 < f)o, I z I ~ I}.

Let g(z) = (A - j(z))j(A + M). By Lemma 2.2, II g lis ~ Cs , so that
IIflls ::::;; (I + Cs)(A + M).
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Without loss of generality, we may state Theorem 2 in the following form:

THEOREM 3. Let D be a simply-connected domain containing {Re z > a}.
Let y be a free Jordan arc for D with 0 E yO. If {Pn(z) = TI~~1 (1 - (zlz~)))}

is a sequence of DC-polynomials which converges uniformly to some f =1= 0 on y,
then {Pn(z)} converges uniformly on every compact set and the limit function is
entire of order ~ 2.

Proof We may assume

(3.1)

Let E be a closed disc of radius 0 about Zo contained in {Re z > a}.
There is a bounded simply connected subdomain 8 of D such that 8 :J E and
y' = 08 () y is a free Jordan arc for S with 0 E y'. Let log Pn(z) denote a
continuous branch of the logarithm on S U y' such that log Pn(O) = O.

Following the method of Ganelius [2], we have for all z

(3.2)

where C is independent of z and n, and where M n = maxzeE I log Pn(z)l.
If T is any bounded set, we have by (3.2),

sup log I Piz)I ~ KrMn ,
zeT

(3.3)

where KT is independent of n.
Let y" be a (proper) subarc of (y')o. There is a closed Jordan region

S1 C S U y' such that 81° contains E and y" = aS1 () y'. Since y' is a free
Jordan arc for S, any conformal mapping of I wi < 1 onto S will have a
one-to-one continuous extension from an arc Cw of I w I = 1 onto y'
[1, p. 86]. Thus by (3.1) and (3.3), we can apply Theorem 1 to log Pn(z) and
obtain

(3.4)

where Ds depends only on S1 and not on n.
1

Either M n < IlKs or M n ? IlKs. In the latter case, there is a .\ inde-
pendent of n such that 0 < .\ < 1, and

M n ~ II log Pn II~ '1llog Pn 11t"\ (3.5)
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by the two constants theorem. Combining (3.4) and (3.5),

II log Pn Ils, ~ 2Ds,Ks II log Pn II~ '1llog Pn lit",

so that by (3.1),

Thus for all n,

(3.6)

and by (3.3) and (3.6), for any bounded set T,

sup IPiz)1 ~ eK™.
ZET

It now follows that {Pn(z)} is normal on {! z I < <Xl} and since {Pn(z)}
converges uniformly on y to f =1= 0, the sequence converges uniformly on
every compact set to some g ~ O. By the Laguerre-P6lya result, g is entire
of order ~ 2.
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