A Borel-Carathéodory Inequality and Approximation of Entire Functions by Polynomials with Restricted Zeros*

J. M. Elkins

Department of Mathematics, The Ohio State University, Columbus, Ohio 43210
Communicated by Oved Shisha
Received November 19, 1969

1. Introduction

By the Borel-Carathéodory inequality, if f is holomorphic in $|z|<1$ with $\operatorname{Re} f(z) \leqslant A(A>0)$, then

$$
\begin{equation*}
\|f(z)\|_{|z| \leqslant r<1} \leqslant \frac{1+r}{1-r}(A+|f(0)|) \tag{1.1}
\end{equation*}
$$

where the left hand side denotes the sup norm of f over the closed disc $|z| \leqslant r<1$. We make use of this result to prove a similar inequality:

Theorem 1. Let γ be a closed, nondegenerate arc of $|z|=1$. Let f be holomorphic in $|z|<1$ with $\operatorname{Re} f(z)<A(A>0)$ there and continuous in $\{|z|<1\} \cup \gamma$ with $\|f\|_{\nu} \leqslant M$. For any compact subset S of $\gamma^{0} \cup\{|z|<1\}$ there is a constant C_{S}, dependent only on S, such that

$$
\begin{equation*}
\|f\|_{S} \leqslant C_{S}(A+M) \tag{1.2}
\end{equation*}
$$

(γ^{0} is γ with its end points removed.)
We use Theorem 1 to generalize a classical Theorem of Laguerre-Pólya [6, Theorem XII]: if D is an open half-plane and $\left\{P_{n}(z)\right\}$ is a sequence of D^{C}-polynomials (polynomials whose zeros lie in the complement of D) which converges uniformly on a disc in D to some $f \not \equiv 0$, then $\left\{P_{n}(z)\right\}$ converges uniformly on every compact set and f is entire of order $\leqslant 2$. This result was generalized in one direction by Ganelius [2] who extended it to simply con-

[^0]nected domains containing a half-plane. Later Korevaar and Loewner [5] proved that when D is an open half-plane, it is sufficient to have uniform convergence to $f \not \equiv 0$ on a Jordan arc in clos D. These results follow as special cases of:

THEOREM 2. Let D be a simply connected domain containing a half-plane. Let γ be a Jordan arc in clos D such that either $\gamma \subset D$ or γ is a free Jordan arc for D (that is, γ^{0} contains only accessible boundary points of D and every Jordan domain bounded by a subarc of γ^{0} and two cuts into D lies entirely in D). If $\left\{P_{n}(z)\right\}$ is a sequence of D^{C}-polynomials which converges uniformly on γ to some $f \neq 0$, then $\left\{P_{n}(z)\right\}$ converges uniformly on every compact set and f is entire of order $\leqslant 2$. (For a more precise description of the form of f see [6].)

2. The Variant of the Borel-Carathéodory Inequality

Theorem 1 follows quite easily from Lemma 2.1, whose proof was suggested by F. Carroll.

Lemma 2.1. Let $\gamma=\left\{e^{i \theta}:|\theta| \leqslant \theta_{0}<\pi\right\}$. Suppose f is holomorphic in $|z|<1$ with $\operatorname{Re} f(z)>0$ there and continuous on $\{|z|<1\} \cup \gamma$ with $\|f\|_{\nu} \leqslant 1$. For each closed sector $S=\left\{z:|\arg z| \leqslant \theta_{1}<\theta_{0},|z| \leqslant 1\right\}$ there is a constant C_{S} dependent only on S, such that $\|f\|_{S} \leqslant C_{S} \max (1,|f(0)|)$.

Proof. Let $z_{1}=\exp \left(i\left(\theta_{0}+\theta_{1}\right) / 2\right)$ and $z_{2}=\bar{z}_{1}$. We define:

$$
\begin{equation*}
h(z)=\left(z-z_{1}\right)\left(z-z_{2}\right) f(z) \tag{2.1}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\|h\|_{\gamma} \leqslant 4\|f\|_{\gamma} \leqslant 4, \tag{2.2}
\end{equation*}
$$

and by applying the Borel-Carathéodory inequality to $f(z)$, we obtain

$$
\begin{equation*}
\left|h\left(r z_{1}\right)\right| \leqslant 2(1-r) \frac{(1+r)}{(1-r)}|f(0)| \leqslant 4|f(0)| \tag{2.3}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\left|h\left(r z_{2}\right)\right| \leqslant 4|f(0)| . \tag{2.4}
\end{equation*}
$$

But $h(z)$ is holomorphic in $|z|<1$, so that by (2.2), (2.3) and (2.4):

$$
\begin{equation*}
\|h\|_{s} \leqslant 4 \max (|f(0)|, 1) . \tag{2.5}
\end{equation*}
$$

It follows from (2.1) and (2.5) that

$$
\begin{equation*}
\|f\|_{S} \leqslant \frac{\|h\|_{S}}{\left|e^{i \theta_{1}}-z_{1}\right|^{2}} \leqslant \frac{4}{\left|e^{i \theta_{1}}-z_{1}\right|^{2}} \max (1,|f(0)|) \tag{2.6}
\end{equation*}
$$

Lemma 2.2. Let γ, f and S be as in Lemma 2.1 and let

$$
U=\left\{|z| \leqslant r_{1}<1\right\} \cup S .
$$

There exists a constant C_{U}, dependent only on U, such that

$$
\|f\|_{U} \leqslant C_{U}
$$

Proof. By Lemma 2.1, $\|f\|_{s} \leqslant C_{S} \max (1,|f(0)|)$. By the BorelCarathéodory inequality, $\|f\|_{|z| \leqslant r_{1}} \leqslant\left[\left(1+r_{1}\right) /\left(1-r_{1}\right)\right] \max (1,|f(0)|)$. Thus $\|f\|_{U} \leqslant K_{U} \max (1,|f(0)|)$, where $K_{U}=C_{s}+\left[\left(1+r_{1}\right) /\left(1-r_{1}\right)\right]>1$.

If $|f(0)| \leqslant 1$, then

$$
\begin{equation*}
\|f\|_{U} \leqslant K_{U} \tag{2.7}
\end{equation*}
$$

If $|f(0)|>1$, then $\|f\|_{U} \leqslant K_{U}|f(0)|$ and by the two constants theorem [3, Vol. 2, p. 409],

$$
|f(0)| \leqslant\left(K_{U}|f(0)|\right)^{\lambda} \cdot 1^{1-\lambda}
$$

where $\lambda(0<\lambda<1)$ is the harmonic measure of $\left\{e^{i \theta}:|\theta| \leqslant \theta_{1}\right\}$ with respect to U^{0}, the interior of U, evaluated at 0 . So $|f(0)| \leqslant K_{U}^{\lambda /(1-\lambda)}$ and

$$
\begin{equation*}
\|f\|_{U} \leqslant K_{U}^{1 /(1-\lambda)} \tag{2.8}
\end{equation*}
$$

By (2.7) and (2.8) we always have $\|f\|_{U} \leqslant K_{U}^{1 /(1-\lambda)}$.
Proof of Theorem 1. Without loss of generality, we may assume

$$
\gamma=\left\{e^{i \theta}:|\theta| \leqslant \theta_{0}<\pi\right\}
$$

and

$$
S=\left\{z:|z| \leqslant r_{1}<1\right\} \cup\left\{z:|\arg z| \leqslant \theta_{1}<\theta_{0},|z| \leqslant 1\right\}
$$

Let $g(z)=(A-f(z)) /(A+M)$. By Lemma $2.2,\|g\|_{s} \leqslant C_{S}$, so that $\|f\|_{S} \leqslant\left(1+C_{S}\right)(A+M)$.

3. Generalization of the Laguerre-Pólya's Theorem

Without loss of generality, we may state Theorem 2 in the following form:
Theorem 3. Let D be a simply-connected domain containing $\{\operatorname{Re} z>a\}$. Let γ be a free Jordan arc for D with $0 \in \gamma^{0} . I f\left\{P_{n}(z)=\prod_{K=1}^{v_{n}}\left(1-\left(z / z_{K}^{(n)}\right)\right)\right\}$ is a sequence of D^{C}-polynomials which converges uniformly to some $f \neq 0$ on γ, then $\left\{P_{n}(z)\right\}$ converges uniformly on every compact set and the limit function is entire of order $\leqslant 2$.

Proof. We may assume

$$
\begin{equation*}
\left\|P_{n}(z)-1\right\|_{\gamma} \leqslant \frac{1}{2} . \tag{3.1}
\end{equation*}
$$

Let E be a closed disc of radius δ about z_{0} contained in $\{\operatorname{Re} z>a\}$. There is a bounded simply connected subdomain S of D such that $S \supset E$ and $\gamma^{\prime}=\partial S \cap \gamma$ is a free Jordan arc for S with $0 \in \gamma^{\prime}$. Let $\log P_{n}(z)$ denote a continuous branch of the logarithm on $S \cup \gamma^{\prime}$ such that $\log P_{n}(0)=0$.

Following the method of Ganelius [2], we have for all z

$$
\begin{equation*}
\log \left|\frac{P_{n}\left(z+z_{0}\right)}{P_{n}\left(z_{0}\right)}\right| \leqslant\left(|z|+\frac{C}{\delta}|z|^{2}\right) \frac{M_{n}}{\delta}, \tag{3.2}
\end{equation*}
$$

where C is independent of z and n, and where $M_{n}=\max _{z \in E}\left|\log P_{n}(z)\right|$. If T is any bounded set, we have by (3.2),

$$
\begin{equation*}
\sup _{z \in T} \log \left|P_{n}(z)\right| \leqslant K_{T} M_{n}, \tag{3.3}
\end{equation*}
$$

where K_{T} is independent of n.
Let $\gamma^{\prime \prime}$ be a (proper) subarc of $\left(\gamma^{\prime}\right)^{0}$. There is a closed Jordan region $S_{1} \subset S \cup \gamma^{\prime}$ such that $S_{1}{ }^{0}$ contains E and $\gamma^{\prime \prime}=\partial S_{1} \cap \gamma^{\prime}$. Since γ^{\prime} is a free Jordan arc for S, any conformal mapping of $|w|<1$ onto S will have a one-to-one continuous extension from an arc C_{w} of $|w|=1$ onto γ^{\prime} [1, p. 86]. Thus by (3.1) and (3.3), we can apply Theorem 1 to $\log P_{n}(z)$ and obtain

$$
\begin{equation*}
\left\|\log P_{n}\right\|_{S_{1}} \leqslant D_{S_{1}}\left(K_{s} M_{n}+1\right), \tag{3.4}
\end{equation*}
$$

where $D_{s_{1}}$ depends only on S_{1} and not on n.
Either $M_{n}<1 / K_{S}$ or $M_{n} \geqslant 1 / K_{S}$. In the latter case, there is a λ independent of n such that $0<\lambda<1$, and

$$
\begin{equation*}
M_{n} \leqslant\left\|\log P_{n}\right\|_{\gamma}^{\lambda} \cdot\left\|\log P_{n}\right\|_{s_{1}}^{1-\lambda}, \tag{3.5}
\end{equation*}
$$

by the two constants theorem. Combining (3.4) and (3.5),

$$
\left\|\log P_{n}\right\|_{s_{1}} \leqslant 2 D_{S_{1}} K_{S}\left\|\log P_{n}\right\|_{v}^{\lambda} \cdot\left\|\log P_{n}\right\|_{s_{1}}^{1-\lambda}
$$

so that by (3.1),

$$
\left\|\log P_{n}\right\|_{S_{1}} \leqslant\left(2 D_{S_{1}} K_{S}\right)^{1 / \lambda}\left\|\log P_{n}\right\|_{\nu} \leqslant\left(2 D_{S_{1}} K_{S}\right)^{1 / \lambda}
$$

Thus for all n,

$$
\begin{equation*}
M_{n} \leqslant \frac{1}{K_{S}}+\left(2 D_{S_{1}} K_{S}\right)^{1 / \lambda}=M \tag{3.6}
\end{equation*}
$$

and by (3.3) and (3.6), for any bounded set T,

$$
\sup _{z \in T}\left|P_{n}(z)\right| \leqslant e^{K_{T} M} .
$$

It now follows that $\left\{P_{n}(z)\right\}$ is normal on $\{|z|<\infty\}$ and since $\left\{P_{n}(z)\right\}$ converges uniformly on γ to $f \not \equiv 0$, the sequence converges uniformly on every compact set to some $g \not \equiv 0$. By the Laguerre-Pólya result, g is entire of order $\leqslant 2$.

References

1. C. Carathéodory, "Conformal Representation," Cambridge Tracts in Mathematics and Mathematical Physics, No. 28, Cambridge University Press, London/New York, 2nd ed., 1958.
2. T. Ganelius, Sequences of analytic functions and their zeros, Ark. Mat. 3 (1953), 1-50.
3. E. Hille, "Analytic Function Theory," Vol. 1 (1959), Vol. 2 (1962), Ginn and Co., Boston.
4. K. Hoffman, "Banach Spaces of Analytic Functions," Prentice-Hall, Englewood Cliffs, N. J., 1962.
5. J. Korevaar and C. Loewner, Approximations on an arc by polynomials with restricted zeros, Nederl. Akad. Wetensch. Proc. Ser. A 67 (1964), 121-128.
6. N. Obrechkoff, Quelques classes de fonctions entières limites de polynomes et de fonctions meromorphes limites de fractions rationnelles, Act. Sci. Indust., No. 891, 1941.
7. S. Saks and A. Zygmund, "Analytic Functions," Monografie Matematyczne, Warsaw, 1952.
8. M. Tsui, "Potential Theory in Modern Function Theory," Maruzen, Tokyo, 1959.

[^0]: * These results are part of the author's 1966 doctoral dissertation at the University of Wisconsin, written under the direction of Professor Jacob Korevaar. This work was supported by a research grant from the National Science Foundation.

